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Abstract. We calculate the cross section and All asymmetry of the diffractive J/Ψ leptoproduction for a
simple model of a Pomeron coupling with a proton, which contains the γα term and a spin-dependent part.
It is shown that the asymmetry caused by the Pomeron coupling ∝ γα does not vanish for nonzero |t|. The
sensitivity of the polarized diffractive J/Ψ production to the spin-dependent part of the Pomeron coupling
is found to be rather weak. As a result, it is difficult to study the structure of the Pomeron coupling with
the proton in future polarized diffractive experiments on the J/Ψ production.

1 Introduction

The study of diffractive processes at HERA has renewed
interest in investigating the nature of the Pomeron. New
results on the Pomeron intercept in diffractive events and
information about the Pomeron partonic structure have
been obtained in H1 and ZEUS experiments [1,2]. Among
different diffractive processes, which have been studied ex-
perimentally at DESY, vector-meson production [3,4] has
a key place. These reactions can give information on the
gluon distribution in the nucleon at small x and on the
structure of the Pomeron. The diffractive J/Ψ production
has a significant role in these investigations. In contrast
with the ρ meson production, the qq̄ exchange in the t
channel is not important here and the predominant contri-
bution is determined by a color-singlet t-channel exchange
(Pomeron).

The phenomenological Pomeron describes the cross
section of elastic reactions at high energies and the low-x
behavior of the structure functions. From the fit of soft
elastic processes, the linear soft Pomeron trajectory [5]

αp(t) = 1 + εs + α′t, (1)

was suggested, with εs = 0.08 and α′ = 0.25 GeV−2. How-
ever, the value αp(0) =1.12–1.2 of the Pomeron intercept,
which has been obtained at HERA [2], is inconsistent with
the soft Pomeron with εs = 0.08. The explanation of this
discrepancy may be quite simple. In the soft reactions, the
interaction time is large and the Pomeron rescattering ef-
fects must be important. It has been found in [6] that
the rescattering effects decrease the value of the Pomeron
intercept from ε ∼ 0.15 for the hard “bare” Pomeron to
ε ∼ 0.08 for the soft Pomeron. Thus, in hard diffractive
processes like the J/Ψ production, the value of ε should
be about 0.15.

Different models of the Pomeron [7] have been used to
study the diffractive vector-meson production [8–11]. The

models [8,9], based on the dominant role of the Pomeron
contribution in these processes, reproduce the main fea-
tures of the vector-meson production: the mass, Q2, t, and
energy dependencies of the cross section. In the QCD-
inspired models, the Pomeron is modeled by two gluons
[12]. It is usually assumed that the Pomeron couples to
a proton, for example like a C = +1 isoscalar photon
[13], and has a simple γα vertex. A more general form of
the Pomeron coupling, an isoscalar nucleon current with
isoscalar Dirac and Pauli form factors, has been used in
[14,15] to study the diffractive processes. In these ap-
proaches, the cross sections are dependent on the Pomeron
coupling with the proton. Otherwise, it has been found in
[10,11] that the cross section of the vector-meson photo-
production in the forward limit |t| = 0 and high Q2 is
proportional to [xG(x, Q̄2)]2. The typical scale here is de-
termined by Q̄2 = (Q2 + M2

V)/4 [10,11] where Q2 is the
photon virtuality and MV is the mass of the vector me-
son. For the diffractive J/Ψ production, the scale is large
enough even for small Q2, and perturbative calculations
can be used. We see that the cross sections of diffrac-
tive reactions are expressed, on one hand, in terms of the
Pomeron coupling, and on the other hand, through gluon
distributions. Consequently, these quantities should be re-
lated.

The sensitivity of diffractive lepto- and photoproduc-
tion to the gluon density in the proton can give an ex-
cellent tool to test G(x) [10]. The relation of the spin-
average diffractive production with the gluon structure
function of the proton gives way to an assumption that
the longitudinal double-spin asymmetry in such processes
might be proportional to [∆G/G] [16]. Contrary to those
results, it has been found in [17] that the All asymmetry
in the diffractive vector-meson production should be zero
for |t| = 0. As a result, this process cannot be used to
study ∆G of the proton.
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Fig. 1a,b. Feynman graphs for the diffractive vector-meson
production

The value of the asymmetry in the polarized vector-
meson production in diffractive processes for nonzero |t|
is not well known now. It is very important to perform
model calculations of spin-dependent J/Ψ leptoproduction
to obtain quantitative estimations of spin asymmetries
and their connection with the Pomeron coupling struc-
ture (see [18]). In this paper, we calculate the cross section
and the All asymmetry of the diffractive J/Ψ leptoproduc-
tion. The cross section of the J/Ψ leptoproduction can be
decomposed into the leptonic and hadronic tensors, the
amplitude of the γ?IP → J/Ψ transition, and the Pomeron
exchange. After describing some kinematics of the process
in Sect. 2, we consider the structure of the leptonic and
hadronic tensors in Sect. 3. We use a simple form of the
proton coupling with the two-gluon system that is similar
to those introduced in [14]. In Sect. 4, we calculate the
spin-dependent cross section of the J/Ψ leptoproduction
for the longitudinal polarization of the initial lepton and
proton. The numerical results for the diffractive J/Ψ pro-
duction at HERA and HERMES energies is presented in
Sect. 5. We finish with concluding remarks in Sect. 6.

2 Kinematics
of diffractive J/Ψ leptoproduction

Let us study the diffractive J/Ψ production

l + p → l + p + J/Ψ (2)

at high energies s = (p+ l)2 and fixed momentum transfer
t = r2

P = (p − p′)2. Here p and l are the initial momenta
of the lepton and proton, p′ is the final proton momen-
tum and rP is a momentum carried by the Pomeron. The
graphs, which describe reaction 2, are shown in Fig. 1a,b.
The gluons from the Pomeron are coupled with single and
different quarks in the cc̄ loop. This ensures the gauge in-
variance of the final result [19]. The blob in the proton line
represents the proton–two-gluon coupling which comprises
the high-energy t-channel gluon ladder of the Pomeron ex-
cept the simple two-gluon exchange. The reaction (2) is
described by, in addition to s and t, the variables

Q2 = −q2, y =
p · q

p · l
, xP =

q · rP

q · p
, (3)

where Q2 is the photon virtuality.

The light-cone variables convenient for our calculations
are determined by a± = a0 ± az. In these variables, the
scalar product of two four-vectors looks like

a · b =
1
2
(a+b− + a−b+) − a⊥b⊥,

where a⊥ and b⊥ represent the transverse parts of the
momenta. We use the center-of-mass system, where the
momenta of the initial lepton and proton are going along
the z axis and have the form

l =
(

p+,
µ2

p+
,0

)
, p =

(
m2

p+
, p+,0

)
. (4)

Here µ and m are the lepton and proton mass. The energy
of the lepton–proton system then reads as s ∼ p2

+. We
can determine the spin vectors with positive helicity of
the lepton and the proton by

sl =
1
µ

(
p+,− µ2

p+
,0

)
, s2

l = −1, sl · l = 0;

sp =
1
m

(
−m2

p+
, p+,0

)
, s2

p = −1, sp · p = 0. (5)

The momenta are carried by the photon and the
Pomeron, and can be written as follows:

q =
(

yp+,−Q2

p+
,q⊥

)
, |q⊥| =

√
Q2(1 − y), q2 = −Q2;

rP =
(

− |t|
p+

, xPp+, r⊥

)
, |r⊥| =

√
|t|(1 − xP), r2

P = t. (6)

Thus, y and xP are the fractions of the longitudinal mo-
menta of the lepton and proton carried by the photon and
Pomeron, respectively. From the mass-shell equation for
vector-meson momentum K2

J = (q + rP)2 = M2
J , we find

that, for these reactions,

xP ∼ m2
J + Q2 + |t|

sy
(7)

and that xp is small at high energies.

3 Structure of leptonic and hadronic tensors

3.1 Leptonic tensor

The structure of the leptonic tensor is quite simple [21]
because the lepton is a point-like object

Lµν(sl) =
∑

spin sf

ū(l′, sf)γµu(l, sl)ū(l, sl)γνu(l′, sf)

= Tr
[
(/l + µ)

1 + γ5/sl

2
γν(/l′ + µ)γµ

]
. (8)

Here l and l′ are the initial and final lepton momenta, and
sl is a spin vector of the initial lepton determined in (5).
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The sum and difference of the cross sections with par-
allel and antiparallel longitudinal polarization of a proton
and a lepton are expressed in terms of the spin-average
and spin-dependent hadron and lepton tensors

Lµν(±) =
1
2

(
Lµν

(
+

1
2

)
± Lµν

(
−1

2

))
, (9)

where Lµν(± 1
2 ) are the tensors with the helicity of the

initial lepton equal to ±1/2. The tensors (9) look like

Lµν(+) = 2(gµν l · q + 2lµlν − lµqν − lνqµ),

Lµν(−) = 2iµεµνδρqδ(sl)ρ. (10)

3.2 Pomeron–proton coupling

The Pomeron is a vacuum t-channel exchange that de-
scribes diffractive processes at high energies. The Pomeron
contribution to the hadron–hadron scattering amplitude
can be written in the form

T (s, t) = iIP (s, t)VAIP ⊗ VBIP, (11)

where IP is a function determined by the Pomeron and
VAIP and V BIP are the Pomeron couplings with particles A
and B, respectively.

The spin structure of the Pomeron coupling is an open
problem now. When the gluons from the Pomeron couple
to a single quark in the hadron, a simple matrix structure
of the Pomeron vertex

V α
hIP = BhIPγα (12)

appears in a QCD-based model [20]. This γα coupling
leads to transverse spin-flip effects decreasing with increas-
ing energy as 1/s. The effective Pomeron coupling with the
hadron (12) is like a C = +1 isoscalar photon vertex [13].
Then, the Pomeron–proton coupling should be equivalent
to the isoscalar electromagnetic nucleon current. The spin-
dependent Pomeron coupling can be obtained if one con-
siders together with the Dirac form factor (12) the Pauli
form factor [14] in the electromagnetic nucleon current. If
the gluons from the Pomeron carry some fraction xP of
the initial proton momenta, this coupling can be written
in the form

V α
pgg(p, t, xP) = 2pαA(t, xP) + γαB(t, xP). (13)

Let us study the meson–nucleon scattering described
at high energies and the fixed momentum transfer by the
Pomeron contribution. The coupling of the Pomeron with
the meson for small |t| can be written in the form qµφ(t),
where q is the initial meson four-momentum and φ(t) is a
meson–Pomeron form factor. This form is similar to the
photon–meson vertex. For the Pomeron–proton coupling
(13), we find the following meson–nucleon scattering am-
plitude:

M(s̃, t) = i [s̃A(t, xP) + /qB(t, xP)]φ(t). (14)

Here s̃ = (p + q)2 and xP ∝ 1/s̃. Thus, the Pomeron cou-
pling (13) provides the standard form of the scattering am-
plitude. The meson–proton helicity-nonflip and helicity-
flip amplitudes are expressed in terms of the invariant
functions A and B:

F++(s, t) = is̃[B(t, xP) + 2mA(t, xP)]φ(t);

F+−(s, t) = is̃
√

|t|A(t, xP)φ(t), (15)

and the spin-average cross-section is written in the form

dσ

dt
∼ [|B + 2mA|2 + |t||A|2]φ(t)2. (16)

Here m is a proton mass. We see that the term propor-
tional to B represents the Pomeron coupling that leads
to the nonflip amplitude. The A function is the spin-
dependent part of the Pomeron coupling, which produces
spin-flip effects that are nonvanishing at high-energies.
The absolute value of the ratio of A to B is proportional
to the ratio of helicity-flip and -nonflip amplitudes. It has
been found in [22,23] that the ratio |A|/|B| is about 0.1–
0.2 GeV−1 and has a weak energy dependence. This value
of the |A|/|B| ratio and weak energy dependence of spin
asymmetries in exclusive reactions is not in contradiction
with the experiment [24] and is confirmed by the model
results (see [22,25], for example).

A proton–Pomeron coupling similar to (13) has been
used in [15] to analyze the spin effects in diffractive vector-
meson production. In the model [22], the form (13) was
found to be valid for small momentum transfer |t| < few
GeV2 and the A(t) function to be caused by the meson-
cloud effects in the nucleon. This model gives a quanti-
tative description of meson–nucleon and nucleon–nucleon
polarized scattering at high energies. The complicated spin
structure of the Pomeron coupling may be due to the
nonperturbative structure of the proton. In a QCD-based
model, in which the proton is viewed as being composed
of a quark and a diquark [26], the structure (13) for the
proton coupling with a two-gluon system has been found
for moderate momentum transfer [23]. The A(t) contribu-
tion is determined there by the effects of vector diquarks
inside the proton, which are of the order of αs. In all the
cases, the spin-flip A(t) contribution is determined by the
nonperturbative effects in the proton.

Since the Pomeron consists of two gluons [12], the
Pomeron coupling should have two gluon indices. We use
in calculations the following generalization of (13) as an
ansatz:

V αα′
pgg (p, t, xP, l) = 4pαpα′

A(t, xP, l)

+ (γαpα′
+ γα′

pα)B(t, xP, l). (17)

This vertex is shown in Fig. 1a,b by the blob in the proton
line. The properties of the structure (17) are completely
equivalent to the coupling (13) (see Sect. 3.3 and 3.4). It
has been mentioned above that this vertex contains the
gluon ladder, except for two gluons that provide the l de-
pendencies in (17). In what follows, we shall calculate the
imaginary part of the Pomeron contribution to the scatter-
ing amplitude, which dominates in the high-energy region.
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This contribution is equivalent to the t-channel cut in the
gluon-loop graph.

3.3 Simple form of hadronic tensor

The hadronic tensor for the vertex (13) can be written in
the form

Wα;β(sp) =
∑

spin sf

ū(p′, sf)V α
pgg(p, t, xP)u(p, sp) ·

ū(p, sp)V β +
pgg (p, t, xP)u(p′, sf). (18)

Here p and p′ are the initial and final proton momenta and
sp is a spin vector of the initial proton. The spin-average
and spin-dependent hadron tensors are determined simi-
larly as in (9). The leading term of the spin-average hadron
tensor must have a maximum number of the large proton
momenta pα. It looks like

Wα;β(+) = 4pαpβ(|B + 2mA|2 + |t||A|2) (19)

and is proportional to the meson–proton cross section (16)
up to some function of t.

The spin-dependent part of the hadron tensor can be
represented as a sum of structures which have different
natures:

Wα;β(−) = ∆Aα;β
γ + ∆Aα;β

1 . (20)

The ∆Aγ term has indices of different Pomeron couplings
in the ε function

∆Aα;β
γ = 2im|B|2εαβγδ(rP)γ(sp)δ. (21)

This contribution is proportional to |B|2 and equivalent
in form to the spin-dependent part of the leptonic tensor
(see (10)); we call it a γ-coupling asymmetry. The ∆A1
term contains both A and B amplitudes from (13):

∆Aα;β
1 =

[
4pβB

] [
2iA?εαγδρpγ(rP)δ(sp)ρ

]
− [4pαB?]

[
2iAεβγδρpγ(rP)δ(sp)ρ

]
. (22)

3.4 Generalized hadronic tensor

The hadronic tensor for the ansatz (17) is given by

Wαα′;ββ′
(sp) =

∑
spin sf

ū(p′, sf)V αα′
pgg (p, t, xP, l)u(p, sp) ·

ū(p, sp)V ββ′ +
pgg (p, t, xP, l′)u(p′, sf). (23)

The spin-average and spin-dependent hadron tensors are
written as

Wαα′;ββ′
(±) =

1
2

(
Wαα′;ββ′

(
+

1
2

)
± Wαα′;ββ′

(
−1

2

))
.

(24)
For the leading term of W (+), we find

Wαα′;ββ′
(+) = 16pαpα′

pβpβ′
(|B+2mA|2 + |t||A|2). (25)

Note that we omit for simplicity here and in what follows
the arguments of the A and B functions unless it is nec-
essary. However, we shall remember that the amplitudes
A and B depend on l, otherwise the complex conjugative
values A? and B? are functions of l′.

The spin-dependent part of the hadron tensor can be
written as

Wαα′;ββ′
(−) = ∆Aαα′;ββ′

γ + ∆Aαα′;ββ′
1 . (26)

Here

∆Aαα′;ββ′
γ = 2im|B|2·[

pα′
pβ′

εαβγδ(rP)γ(sp)δ +
(all per-
mutations

) ({α→α′}
{β→β′}

)]
(27)

and

∆Aαα′;ββ′
1 =[

4pβpβ′
B

] [
2iA?pα′

εαγδρpγ(rP)δ(sp)ρ + {α → α′}
]

−[
4pαpα′

B?
] [

2iApβ′
εβγδρpγ(rP)δ(sp)ρ + {β → β′}

]
. (28)

The ∆A1 term has the form of a product of the spin-
dependent part ∆A of one proton vertex and the symmet-
ric part S of the other. It can be written as

∆A1 = −(∆Aαα′
)?Sββ′ − ∆Aββ′

(Sαα′
)?, (29)

where

Sββ′
=

[
4Bpβpβ′]

;

∆Aαα′
=

[
2iApα′

εαγδρpγ(rP)δ(sp)ρ + {α → α′}
]
. (30)

We see that ∆Aγ and ∆A1 from (26), in contrast with
the relevant terms in (20), have the additional pα′

pβ′
mo-

menta and symmetrization over α → α′, β → β′ in-
dices. The powers of large scalar production p · q which
appear in this case will be compensated after the loop
integration over l and l′. As a result, (20) and (26) will
produce the same spin-dependent amplitude. Using the
above-mentioned argument, we find that the forms (19)
and (25) lead to the same spin-average amplitude. Hence,
the Pomeron couplings (13) and (17) are equivalent. The
very important property of (20,26) is that both the B2

and A · B terms contribute to the W (−) tensor, which is
responsible for the asymmetry.

4 Diffractive J/Ψ leptoproduction

4.1 Amplitude of the γIP → J/Ψ transition

Now we address the structure of the amplitude of γIP →
J/Ψ production. In what follows, we have regarded the
J/Ψ meson as an S-wave system of cc̄ quarks [27]. The
J/Ψ wave function in this case has the form g(/k + mc)γµ,
where k is the quark momentum and mc is its mass. In
the nonrelativistic approximation, both the quarks have
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the same momentum k, equal to half of the vector-meson
momentum KJ, and the mass of the c quark is equal to
mJ/2. The coupling constant g can be expressed through
the e+e− decay width of the J/Ψ meson

g2 =
3Γ J

e+e−mJ

64πα2 . (31)

The gluons from the Pomeron are coupled with the
single and different quarks in the cc̄ loop (see Fig. 1a, b).
The γIP → J/Ψ transition amplitudes for these graphs look
like

Ta = gTr[/eJ(/k + mc)γα(/k + /l + mc)γα′(/r + mc)γν ]

× 1
r2 − m2

c
;

Tb = gTr[/eJ(/k + mc)γα′(/w + mc)γν(−/k − /l + mc)γα]

× 1
w2 − m2

c
. (32)

Here r = k−rP and w = k−rP− l are the momenta of the
off-mass shell quark in the loop for the diagram, Fig.1. a,
b, respectively, and eJ is polarization of the J/Ψ meson,
which obeys the relation

∑
spinJ

eρ
J(e

σ
J )+ = −gρσ +

Kρ
JKσ

J

m2
J

. (33)

It is known (see [10,11], for example) that the leading
terms of the amplitude of the diffractive vector-meson pro-
duction are mainly imaginary. To calculate the imaginary
part, we must consider the δ-function contribution in the
s-channel propagators (k + l and p′ − l lines for Fig. 1a).
With the help of these δ functions, the integration over l,∫

d4l =
1
2

∫
dl+dl−dl⊥ (34)

can be carried out over l+ and l− variables. One can find
that both the l± components of the vector l are small: l+ ∼
l− ∝ 1/p+. This results in the transversity of the gluon
momentum l2 ' −l2⊥. The same is true for integration over
l in the nonplanar graph of Fig. 1b. For the arguments in
the propagator of graphs, Fig. 1a,b, we find

r2 − m2
c = −M2

J + Q2 + |t|
2

,

w2 − m2
c = −2

(
l2⊥ + l⊥r⊥ +

M2
J + Q2 + |t|

4

)
. (35)

Thus these quark lines are far from the mass shell for
heavy vector-meson production even for small Q2 [10].

4.2 Cross section of vector meson production

The spin-average and spin-dependent cross sections with
parallel and antiparallel longitudinal polarization of a lep-
ton and a proton are determined by the relation

σ(±) =
1
2

(σ(→
⇐) ± σ(→

⇒)) . (36)

These cross sections are expressed through the squared
amplitude of the γIP → J/Ψ transition and convoluted
with the spin-average and spin-dependent lepton and hadron
tensors (10), (24–26). The analyses of the leading over s
contribution to the cross sections have been carried out
with the help of the REDUCE and MAPLE programs.
We summarize over the spin of the J/Ψ meson and use
(33) in calculation. In both cases, the squared amplitude
of the J/Ψ electroproduction is expressed through the in-
tegral over l, l′:

|T±|2 =
∫

d2l⊥d2l′⊥D(t, Q2, l⊥)D(t, Q2, l′⊥) ·
F±[A(l⊥), B(l⊥);A?(l′⊥), B?(l′⊥)], (37)

where the functions F± include the A and B amplitudes
from (17). The l dependence of these functions for small
l has been discussed in, e.g., the second reference of [9].
The function D is determined by the contribution of the
t-channel gluon propagators and the sum of the γIP → J/Ψ
transition amplitude (32) for the graphs of Fig. 1a,b:

D(t, Q2, l⊥) =
1

(l2⊥ + λ2)((l⊥ + r⊥)2 + λ2)
·

(
na

r2 − m2
c

+
nb

w2 − m2
c

)
. (38)

The leading-order s terms in the numerators na(b) for the
graphs, Fig. 1a,b, have a similar form but are different in
sign: nb ∼ −na = n. In the sum of diagrams, Fig. 1a,b,
their contributions mainly compensate for each other:

n

w2 − m2
c

− n

r2 − m2
c

=

2n(l2⊥ + l⊥r⊥)
(M2

J + Q2 + |t|) [l2⊥ + l⊥r⊥ + (M2
J + Q2 + |t|)/4]

. (39)

This function determines the Q2 dependence of D. It can
be seen that the typical scale in the integral (37) is defined
by (39) and is of the order l̄2⊥ ∼ (M2

J +Q2 + |t|)/4 [10,11].
As a result, (37) can be estimated in the form

|T±|2 = F±(A, B;A?, B?)I2;

I =
∫

d2l⊥D(t, Q2, l⊥). (40)

The functions A and B in F± are dependent on the scale

l̄2⊥ ∼ Q̄2 = (M2
J + Q2 + |t|)/4. (41)

The cross section of the J/Ψ leptoproduction can be
written in the form

dσ±

dQ2dydt
=

|T±|2
32(2π)3Q2s2y

. (42)

For the spin-average squared amplitude, we find

|T+|2 = N((2 − 2y + y2)m2
J + 2(1 − y)Q2)s2 ·

[|B + 2mA|2 + |A|2|t|]I2. (43)
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Here N is a normalization factor:

N =
Γ J

e+e−MJα
4
s

27π2 . (44)

In (43), the term proportional to (2 − 2y + y2)m2
J rep-

resents the contribution of a virtual photon with trans-
verse polarization. The 2(1 − y)Q2 term describes the ef-
fect of longitudinal photons. Thus, we see that the ratio
of σT/σL ∝ m2

J/Q2. Such behavior is typical of a simple
form of the vector-meson wave function used here (see,
e.g., [28])

The spin-dependent squared amplitude looks like

|T−|2 = N(2 − y)s|t|[|B|2 + m(A?B + AB?)]m2
JI

2. (45)

We find that |T−|2 vanishes in the forward direction
(t = 0) and is suppressed as a power of s with respect to
(43). The reason for this suppression is quite simple. The
leading contribution to σ(−) is from the term εαβγρ(rP)γ

. . ., which is proportional to xPp. As a result, an additional
xp appears in σ(−). This has been confirmed by the cal-
culation of the All asymmetry in different diffractive re-
actions [18,29]. In the case of vector-meson production,
xP is small (7) and behaves like 1/s. Hence, longitudinal
double-spin asymmetry in this diffractive process will be
small at high energies; this is confirmed by our calcula-
tions for (45) and (43).

5 Numerical results
for spin-dependent cross sections

We shall calculate the polarized cross section of the diffrac-
tive J/Ψ production (42) for the amplitudes (43, 45). The
connection of the spin-average cross section of the J/Ψ
production with the gluon distribution function is known
as [10,11]

dσ

dt

∣∣∣∣
t∼0

∝ F 2
B(t)

(
xPG(xP, Q̄2)

)2
. (46)

Here FB(t) is a new form factor which describes the t
dependence of the two-gluon coupling with the proton.
The expression of this cross section through the Pomeron–
proton structure has been found in (43). It can be seen
that the B function in (17) can be written as a product
of the form factor and the gluon distribution

B(t, xP, Q̄2) = FB(t)
(
xPG(xP, Q̄2)

)
. (47)

As the Pomeron–proton vertex might be similar to the
photon–proton coupling [8], we shall use a simple approx-
imation,

FB(t) ∼ F em
p (t), (48)

where F em
p (t) is the standard form for the electromagnetic

form factor of the proton

F em
p (t) =

(4m2
p + 2.8|t|)

(4m2
p + |t|)(1 + |t|/0.7 GeV2)2

. (49)

It has been shown in (43, 45) that the leading contribu-
tions to the T+ and T− amplitudes are determined by the
same loop integral I. For simplicity, we shall suppose that
the A amplitude can be parameterized in a form similar
to (47):

A(t, xP, Q̄2) = αFA(t)
(
xPG(xP, Q̄2)

)
. (50)

As above, the new form factor FA(t) describes the t depen-
dence of the two-gluon coupling with the proton for the A
function. We shall use for simplicity FA = F em

p . For the
approximation (50), the ratio of the A and B amplitudes is
independent of x. The α = A/B ratio determines through
the x dependencies of the functions (x ∼ 1/s in this case)
the energy behavior of the spin asymmetries in exclusive
reactions at high energies and fixed momentum transfer.
Thus, (47) and (50) result in energy independence of spin
asymmetries which is in agreement with their weak energy
dependence obtained in the models [22,23,25]. To study
the α sensitivity of the cross section, we shall use in our
estimations the value |α| ≤ 0.1 GeV−1. It has been men-
tioned above that this magnitude is consistent with the
model estimations [22,23].

The energy dependence of the cross sections is deter-
mined by the Pomeron contribution to the gluon distribu-
tion function at small x:

(
xPG(xP, Q̄2)

) ∼
(

sy

m2
J + Q2 + |t|

)(αp(t)−1)

. (51)

Here αp(t) is a Pomeron trajectory. The linear approxi-
mation of the Pomeron trajectory (1) is used. The param-
eters of this trajectory were determined from the fit of the
diffractive J/Ψ production by ZEUS [30]:

αp(t) = 1 + (0.175 ± 0.026) + (0.015 ± 0.065)t. (52)

In our model estimations of the polarized cross section
of the diffractive J/Ψ production, we shall use the values
ε = 0.15 and α′ = 0, which are not far from (52). The typ-
ical scale of the reaction is determined by (41). For non-
large Q2 and |t|, the value of Q̄2 is about 2.5–3.0 GeV2. In
this region, we can work with fixed αs ∼ 0.3. An effective
gluon mass in (38) is chosen to be equal to 0.3 GeV2.
The cross section depends weakly on this parameter. The
value of Γ J

e+e− = 5.26 keV is used.
We integrate the cross sections (42) over Q2 and y to

get the differential cross sections of the J/Ψ production:

dσ±

dt
=

∫ ymax

ymin

dy

∫ Q2
max

Q2
min

dQ2 dσ±

dQ2dydt
, (53)

where

Q2
min = m2

e

y2

1 − y
and Q2

max = 4 Gev2.

For the HERA energy
√

s = 300 GeV, we integrate
over the energy in the photon–proton system 30 GeV
< Wγp < 150 GeV (Wγp ∼ √

ys), which is equivalent to
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Fig. 2. The differential cross section of the J/Ψ produc-
tion at HERA energy. Solid line: α = 0; dot–dashed line:
α = 0.1 GeV−1; dashed line: α = −0.1 GeV−1. Data are from
[3]
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Fig. 3. The differential cross section of the J/Ψ production
at HERMES energy. Solid line: α = 0; dot–dashed line: α =
0.1 GeV−1; dashed line: α = −0.1 GeV−1

the range 0.01 < y < 0.25. Our results, shown in Fig. 2,
describe experimental data [3] at small |t| and lie a little
below them for momentum transfer larger than 1 GeV2.
This may indicate that the simple approximation of the
form factor (48) used here is not good for |t| > 1 GeV2.
Our estimation for the HERMES energy s = 50 GeV2

is performed for integration over 0.3 < y < 0.7. The
predicted cross sections are shown in Fig. 3. It is seen
from Figs. 2 and 3 that the spin-average cross sections are
sensitive to α, but the shape of all curves are the same.
Thus, it is difficult to extract information about the spin-
dependent part of the Pomeron coupling from the spin-
average cross section of the diffractive vector-meson pro-
duction.

Using the same formulas, we calculate the cross sec-
tion σ(−). This gives us a possibility for estimating the
longitudinal double-spin All asymmetry of the J/Ψ pro-
duction at high energies. As has been found, the asym-
metry vanishes as 1/s, and for the HERA energy range,
the expected value of All will be negligible. The predicted
asymmetry for HERMES as a function of α is shown in
Fig. 4. The important property of All is that the asymme-
try of the vector-meson production is equal to zero in the
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�
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m
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Fig. 4. The predicted All asymmetry of the J/Ψ production at
HERMES. Solid line: α = 0; dot–dashed line: α = 0.1 GeV−1;
dashed line: α = −0.1 GeV−1

forward direction. The All asymmetry might be connected
with the spin-dependent gluon distribution ∆G only for
|t| = 0. Thus, ∆G cannot be extracted from All; this is in
agreement with the results of [17].

To understand the α dependence of the asymmetry,
we shall use the approximated expression of the integral
(53). The functions dσ±/(dQ2dydt) decrease very rapidly
with growing Q2. Calculating only the leading log terms of
the integral over Q2 in (53), we can write the double-spin
asymmetry All in the simple form

All ∼ |t|
s

(2 − ȳ)(1 + 2mα)
(2 − 2ȳ + ȳ2) [(1 + 2mα)2 + α2|t|] , (54)

where ȳ is some average value in the integration region.
We find that the asymmetry is nonzero for α = 0:

A0
ll = All(α = 0) ' |t|

s

(2 − ȳ)
(2 − 2ȳ + ȳ2)

. (55)

This asymmetry term is determined by the ∆Aγ contri-
bution to W (−) (see (27)). Both spin-average and spin-
dependent cross sections (43, 45) are proportional to |B|2
∼ (

xPG(xP, Q̄2)
)

for α = 0, which results in the inde-
pendence of A0

ll on the gluon distribution. We see from
Fig. 4 that the A0

ll part of the asymmetry dominates. The
value of the asymmetry for α 6= 0 is determined by the
spin-dependent part of the Pomeron coupling. However,
the sensitivity of the asymmetry to α is not very strong.
Thus, it will not be so easy to study the spin structure of
the Pomeron coupling with the proton from the All asym-
metry of the diffractive J/Ψ production.

6 Conclusion

In the present paper, the polarized cross section of the
diffractive J/Ψ leptoproduction at high energies has been
studied. The relevant cross section can be determined in
terms of the leptonic and hadronic tensors and the squared
amplitude of the vector-meson production, through the
photon–Pomeron fusion. The amplitude of the γIP → J/Ψ
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transition is described by the simple nonrelativistic wave
function. This approximation is efficient, at least for heavy-
meson production. The introduced hadronic tensor is ex-
pressed in terms of the Pomeron–proton coupling struc-
ture which has the helicity-flip part. As a result, a con-
nection between the spin-dependent cross section in the
diffractive J/Ψ production and the Pomeron coupling has
been found. We predict a nonsmall value of the All asym-
metry of the diffractive vector-meson production at the
HERMES energy. However, the asymmetry decreases as
1/s with growing energy, and at the HERA energy, it will
be extremely small. It has been found that the All asym-
metry vanishes at t = 0. Thus, it is impossible to extract
the polarized gluon distribution ∆G from the asymmetry.
The predicted asymmetry is independent of the mass of
a produced meson. We can expect a similar value of the
asymmetry in the polarized diffractive φ–meson leptopro-
duction.

Our results show the essential role of the γ-coupling
asymmetry in All. In this case the asymmetry does not
vanish for nonzero |t| and is completely determined by
the γα term in the Pomeron coupling (13, 17). It does not
depend on the gluon distribution and appears to exhibit a
kinematic character. This form of the Pomeron coupling is
typical of the QCD-based models of the Pomeron [13–15,
20]. Note that the soft Pomeron model leads to zero All
asymmetry in the hadronic leptoproduction [31].

The longitudinal double-spin asymmetry of the vector-
meson production for nonzero momentum transfer has
been found to be dependent on the A term of the Pomeron
coupling, which produces helicity-flip effects. Note that
this spin-dependent part of the coupling A is parametrized
here by the gluon structure function of the proton G for
simplicity. Generally, the function A should be determined
by the polarized gluon distribution, and the ratio α might
depend on xP and t. However, this conformity is not very
well known now. To find the explicit connection of A with
spin-dependent gluon distribution in QCD, additional
study is necessary. The information about the spin struc-
ture of the Pomeron coupling can generally be extracted
from the All asymmetry of the vector-meson production
for |t| 6= 0. Such investigations can be carried out in fu-
ture polarized experiments at CERN and DESY. However,
the sensitivity of asymmetry to the α ratio is quite weak.
Thus, the diffractive vector meson production might not
be a good tool to study the polarized gluon distributions
of the proton or the spin structure of the Pomeron.
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to appear in Proceedings of LISHEP 98, Workshop on
Diffractive Physics, Rio de Janeiro, February 1998

5. A. Donnachie and P.V. Landshoff, Nucl. Phys. B 267,
690 (1986);

6. S.V. Goloskokov, S.P. Kuleshov, and O.V. Selyugin, Mod.
Phys. Lett. A 10, 1959 (1995)

7. E.A. Kuraev, L.N. Lipatov, and V.S. Fadin, Sov. Phys.
JETP. 44, 443 (1976); P.V. Landshoff and O. Nachtmann,
Z. Phys. C 35, 405 (1987)

8. A. Donnachie and P.V. Landshoff, Nucl. Phys. B 311, 509
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